A manned mission to Mars has been the subject of science fiction, engineering, and scientific proposals throughout the 20th century and into the 21st century. The plans comprise proposals not only to land on, but eventually also settle on the planet Mars, its moons, Phobos and Deimos and terraform the planet.
Preliminary work for missions has been undertaken since the 1950s, with planned missions typically taking place 10 to 30 years in the future. The list of manned Mars mission plans in the 20th century shows the various mission proposals that have been put forth by multiple organizations and space agencies in this field of space exploration.
In 2004 the U.S. administration announced a new Vision for Space Exploration naming a manned Mars mission as one of its milestones. No concrete plan has been decided upon, and the proposal is currently being discussed between politicians, scientists, space advocates and in the public. In 2010, a new bill was signed in the USA allowing for a manned Mars mission by the 2030s.[1]
There are several key challenges that a human mission to Mars must overcome:
Some of these issues were estimated statistically in the HUMEX study.[4] Ehlmann and others have reviewed political and economic concerns, as well as technological and biological feasibility aspects.[5]
While fuel for roundtrip travel could be a challenge, methane and oxygen can be produced utilizing Martian H2O (preferably as water ice instead of chemically bound water) and atmospheric CO2 with mature technology.[6]
One of the main considerations for traveling to Mars from Earth or vice versa is the energy needed to transfer between their orbits. Every 26 Earth months a lower energy transfer from Earth to Mars opens,[7] so missions are typically planned to coincide with one of these windows. In addition, the low-energy windows varies higher or lower on roughly a 15 year cycle.[7] For example, there was a minimum in the 1969 and 1971 launch windows, rising to a peak in the late 70s, and hitting another low in 1986 and 1988, and then repeating on the same interval.[7] A typical estimate of round-trip flight time for a manned expedition to Mars is 400 to 450 days,[8] which could take a toll on astronauts.
Over the last century, a number of mission concepts for such an expedition have been proposed. David Portree's history volume Humans to Mars: Fifty Years of Mission Planning, 1950 - 2000 discusses many of these.[7]
Wernher von Braun was the first person to make a detailed technical study of a Mars mission.[7][9] Details were published in his book Das Marsprojekt (1952); published in English as The Mars Project[10] (1962) and several subsequent works,[11] and featured in Collier's magazine in a series of articles beginning March 1952. A variant of the Von Braun mission concept was popularized in English by Willy Ley in the book The Conquest of Space (1949), featuring illustrations by Chesley Bonestell. Von Braun's Mars project envisioned nearly a thousand three-stage vehicles launching from Earth to ferry parts for the Mars mission to be constructed at a space station in Earth orbit.[9][12] The mission itself featured a fleet of ten spacecraft heading to Mars, each one carrying 70 people, bringing three winged surface excursion ships that would land horizontally on the surface of Mars. (Winged landing was considered possible because at the time of his proposal, the Martian atmosphere was believed to be much denser than was later found to be the case.)
In the 1956 revised vision of the Mars Project plan, published in the book The Exploration of Mars by Wernher Von Braun and Willy Ley, the size of the mission was trimmed, requiring only 400 launches to put together two ships, still carrying a winged landing vehicle.[13] Later versions of the mission proposal, featured in the Disney "Man In Space" film series,[14] showed nuclear-powered ion-propulsion vehicles for the interplanetary cruise.
In 1962, Aeronutronic Ford,[15] General Dynamics and the Lockheed Missiles and Space Company made studies of Mars mission designs as part of NASA Marshall Spaceflight Center "Project EMPIRE".[9] These studies indicated that a Mars mission (possibly including a Venus fly-by) could be done with a launch of eight Saturn V boosters and assembly in low Earth orbit, or possibly with a single launch of a hypothetical "post Saturn" heavy-lift vehicle. Although the EMPIRE missions were only studies, and never proposed as funded projects, these were the first detailed analyses of what it would take to accomplish a human voyage to Mars using data from the actual NASA spaceflight, and laid much of the basis for future studies, including significant mission studies by TRW, North American, Philco, Lockheed, Douglas, and General Dynamics, along with several in-house NASA studies.[9]
Following the success of the Apollo Program, von Braun advocated a manned mission to Mars as a focus for NASAs manned space program.[16] Von Braun's proposal used Saturn V boosters to launch nuclear-powered (NERVA) upper stages that would power two six-crew spacecraft on a dual mission in the early 1980s. The proposal was considered by (then president) Richard Nixon but passed over in favor of the Space Shuttle.
The Martian Piloted Complex or "'MPK'" was a proposal by Mikhail Tikhonravov of the Soviet Union for a manned Mars expedition, using the (then proposed) N-1 rocket, in studies from 1956 to 1962.
Heavy Piloted Interplanetary Spacecraft (known by the Russian acronym TMK) was the designation of a Soviet Union space exploration proposal in the 1960s to send a manned flight to Mars and Venus (TMK-MAVR design) without landing. The TMK spacecraft was due to launch in 1971 and make a three-year long flight including a Mars fly-by at which time probes would have been dropped. The TMK project was planned as an answer from the Soviet Union to the United States manned moon landings. The project was never completed because the required N1 rocket never flew successfully.
The Mars Expeditionary Complex, or "'MEK"' (1969) was another Soviet proposal for a Mars expedition that would take a crew from three to six to Mars and back with a total mission duration of 630 days.
Following the Viking missions to Mars, between 1981 and 1996 a series of conferences named The Case for Mars were held at the University of Colorado at Boulder. These conferences advocated human exploration of Mars, presented concepts and technologies, and held a series of workshops to develop a baseline concept for the mission. The baseline concept was notable in that it proposed use of In Situ Resource Utilization to manufacture rocket propellant for the return trip using the resources of Mars. The mission study was published in a series of proceedings volumes[17][18] published by the American Astronautical Society. Later conferences in the series presented a number of alternative concepts, including the "Mars Direct" concept of Robert Zubrin and David Baker; the "Footsteps to Mars" proposal of Geoffrey A. Landis,[19] which proposed intermediate steps before the landing on Mars, including human missions to Phobos; and the "Great Exploration" proposal from Lawrence Livermore National Laboratory, among others.
In response to a presidential initiative, NASA made a study of a project for human lunar- and Mars exploration as a proposed follow-on to the International Space Station project. This resulted in a report, called the 90-day study,[20] in which the agency proposed a long-term plan consisting of completing the Space Station as "a critical next step in all our space endeavors," returning to the moon and establishing a permanent base, and then sending astronauts to Mars. This report was widely criticized as too elaborate and expensive, and all funding for human exploration beyond Earth orbit was canceled by Congress.[21]
Because of the distance between Mars and Earth, the Mars mission would be much more risky and more expensive than past manned flights to the Moon. Supplies and fuel would have to be prepared for a 2-3 year round trip and the spacecraft would have to be designed with at least partial shielding from intense solar radiation. A 1990 paper by Robert Zubrin and David A. Baker, then of Martin Marietta, proposed reducing the mission mass (and hence the cost) with a mission design using In Situ Resource Utilization to manufacture propellant from the Martian Atmosphere.[22][23] This proposal drew on a number of concepts developed by the former "Case for Mars" conference series. Over the next decade, this proposal was developed by Zubrin into a mission concept, Mars Direct, which he developed in a book, The Case for Mars (1996). The mission is advocated by the Mars Society, which Zubrin founded in 1998, as a practical and affordable plan for a manned Mars mission.
In the 1990s NASA developed several conceptual level human Mars exploration architectures. One of these was NASA Design reference mission 3.0 (DRM 3.0). It was a study performed by the NASA Mars Exploration Team at the NASA's Johnson Space Center (JSC) in the 1990s. Personnel representing several NASA field centers formulated a “Reference Mission” addressing human exploration of Mars. The plan describes a human mission to Mars with concepts of operations and technologies to be used as a first cut at an architecture. The architecture for the Mars Reference Mission builds on previous work, principally on the work of the Synthesis Group (1991) and Zubrin’s (1991) concepts for the use of propellants derived from the Martian atmosphere. The primary purpose of the Reference Mission was to stimulate further thought and development of alternative approaches, which can improve effectiveness, reduce risks, and reduce cost. Improvements can be made at several levels; for example, in the architectural, mission, and system levels.
Selected other US/NASA plans (1988–2009):[24]
The Mars Piloted Orbital Station (or MARPOST) is a Russian proposed manned orbital mission to Mars, using a nuclear reactor to run an electric rocket engine. Proposed in October 2000 by Yuri Karash from the Russian Academy of Cosmonautics as the next step for Russia in space along with the Russian participation in the International Space Station, a 30-volume draft project for MARPOST has been confirmed as of 2005.[25] Design for the ship proposed to be ready in 2012, and the ship itself in 2021.[26]
The European Space Agency had a long-term vision of sending a human mission to Mars by 2030. Laid out in 2001, the project's proposed timeline would begin with robotic exploration, a proof of concept simulation of sustaining humans on Mars, and eventually a manned mission; however, objections from the participating nations of ESA and other delays have put the timeline into question.
Another proposal for a joint ESA mission with Russia is based on two spacecraft being sent to Mars, one carrying a six-person crew and the other the expedition's supplies. The mission would take about 440 days to complete with three astronauts visiting the surface of the planet for a period of two months. The entire project would cost $20 billion and Russia would contribute 30% of these funds.[27]
United States President George W. Bush announced an initiative of manned space exploration on January 14, 2004, known as the Vision for Space Exploration. It included developing preliminary plans for a lunar outpost by 2012[28] and establishing an outpost by 2020. Precursor missions that would help develop the needed technology during the 2010-2020 decade were tentatively outlined by Adringa and others.[29] On September 24, 2007, Michael Griffin, then NASA Administrator, hinted that NASA may be able to launch a human mission to Mars by 2037.[30] The needed funds are to be generated by diverting $11 billion[31] from space science missions to the vision for human exploration.
NASA has also discussed plans to launch Mars missions from the Moon to reduce traveling costs.[32]
Project Constellation included an Orion Mars Mission.
NASA released initial details of the latest version conceptual level human Mars exploration architecture in this presentation. The study further developed concepts developed in previous NASA DRM and updated it to more current launchers and technology.
NASA released an updated version of NASA DRM 5.0 in early 2009, featuring use of the Ares V launcher, Orion CEV, and updated mission planning. In this document.[33]
Extrapolated from the DRMA 5.0, plans for a manned mars expedition with chemical propulsion. Austere Human Missions to Mars
The Mars Society Germany proposed a manned Mars mission using several launches of an improved heavy-lift version of the Ariane 5.[34] Roughly 5 launches would be required to send a crew of 5 on a 1200 days mission, with a payload of 120,000 kg (260,000 lb) [34]
In 2006, former NASA engineer James C. McLane III proposed a scheme to initially colonize Mars via a one way trip by only one human. Papers discussing this concept appeared in The Space Review,[35] Harper’s Magazine,[36] SEARCH Magazine[37] and The New York Times.[38]
Mars to Stay is the proposal that astronauts sent to Mars for the first time should stay there indefinitely, both to reduce mission cost and to ensure permanent settlement of Mars. Among many notable Mars to Stay advocates, former Apollo astronaut Buzz Aldrin has been a particularly outspoken promoter, suggesting in numerous forums "Forget the Moon, Let’s Head to Mars!" .[39]
The MarsDrive Organization has been working at a series of new human mission designs starting with Mars for Less. Their current design program under Director of Engineering Ron Cordes has discarded many of the Mars for Less elements and is a work in progress as of June 2008. Some of their design philosophy is focused on using current or near term existing launch vehicle systems, permanent human settlement, conceptual EDL systems and enhanced surface ISRU. Their proposed methods of funding the mission are also an alternative to the current plans with a private consortium approach being investigated.
In a major space policy speech at Kennedy Space Center on April 15, 2010, U.S. President Barack Obama predicted a manned Mars mission to orbit the planet by the mid-2030s, followed by a landing:
By the mid-2030s, I believe we can send humans to orbit Mars and return them safely to Earth. And a landing on Mars will follow. And I expect to be around to see it.
The United States Congress has approved manned missions to the Moon, followed by Asteroid exploration in 2025 and Mars in the 2030s.[40]
In October 2010 NASA Ames Research Center Director Pete Worden introduced the Hundred Year Starship initiative, a project to embark on a one-way mission from Earth to Mars by 2030.[41] The astronauts would be sent supplies from Earth on a regular basis.[42]
A number of Mars mission concepts and proposals have been put forth by Russian scientists. Stated dates were for a launch sometime between 2016 and 2020. The Mars probe would carry a crew of four to five cosmonauts, who would spend close to two years in space.
In late 2011, Russian and European space agencies successfully completed the ground-based MARS-500.[43] The biomedical experiment simulating manned flight to Mars was completed in Russia in July 2009.[44]
A number of nations and organizations have long-term intentions to send humans to Mars. The state of their readiness is summarized below.
Some scientists have argued that attempting manned flight to Mars would actually be counterproductive for science. In 2004, the Special committee on the funding of Astrophysics, a committee of the American Physical Society, stated that "shifting NASA priorities toward risky, expensive missions to the Moon and Mars will mean neglecting the most promising space science efforts".[47]
The debate over whether or not life existed, or indeed still exists on Mars has not been settled. Consequently, a manned mission could contaminate the Martian surface with foreign microbes and compromise the search for indigenous Martian lifeforms.[48]
Several "missions" have been undertaken on Earth to simulate the conditions astronauts would experience during a future mission to mars. Among these are:
See also, Category:Human spaceflight analogs
|
|
|